C Programming Cheatsheet for Microcontrollers

To set bit B in a variable (or register):

variable |= (1<<B); or variable = variable | (1<<B);
Example, set Bit 5 in PORTA:
PORTA |= (1<<5);

Explanation:
The << operator shifts a value to the left by the specified amount. That is, 1<<1 becomes 0b10, and

1<<7 becomes 0b10000000. The | operator is a bitwise OR of two variables. For example,
variablel | variable 2 looks like this:

variablel 0b1100 So, Variablel 0b1100
OR  wvariable2 0b0110 OR (1<<1) 0b0010
Result: 0b1110 Result: 0b1110

This results in the bit B being set without modifying the other bits.

To clear bit B in a variable (or register):

variable &= ~(1<<B); or variable = variable & ~(1<<B);
Example, clear Bit 6 in TRISA:
TRISA &= ~(1<<6);

Explanation:
The << operate shifts a value to the left by the specified amount. That is, 1<<1 becomes 0b10, and

1<<7 becomes 0b10000000. The ~ operator inverts all bits in a variable. That is, ~(0b1100)
becomes (0b0011). The & operator is a bitwise AND of two variables. For example, variablel &
variable 2 looks like this:

variablel 0b1100 So, Variablel 0b1110 0b1110
AND variable2 0b0110 AND ~(1<<1) ~(0b0010) 0b1101
Result: 0b0100 Result: 0b1100

This results in the bit being cleared in the original variable without modifying the other bits.



Configuring Inputs and Outputs:

1. First, properly set the tristate or the data direction register for either input or output. Set TRISx
bit B to a '1' for input or '0' for output

2. For outputs, initialize the output to some value. Set LATx bit B to a '1' to output VDD or a '0' to
output GND.

3. For inputs, set ANSELx bit B to a '0'" for digital input or a '1' for analog input. They are set to '1'
by default, causing all digital reads of the pin to read '0.'

Input pin Example Output Pin Example
TRISA |= 1<<5; TRISA &= ~(1<<5);
ANSELA &= ~(1<<5); LATA |= 1<<5;

Reading Pin Input Status

When a pin is configured as an input, it's current status can be read through the PORTA variable.
It is common to need to branch conditionally on the current status of a pin, but this can pose some
problems. When accessing the PORTA variable, the status of all the pins in the port is read. To
correct this, the input has to be masked. Otherwise, you may satisfy an if-statement even when your
selected pin is not activated. Here is an example of an if-conditional branch when bit B5 is set.

if (PORTB & (1<<5))

{

}

//Branch code

What this does is mask away all the bits that are not bit 5. Here's what the code codes

PORTB Ob1110110 0b1100110
AND (1<<5) 0b0010000 0b0010000
0b0010000 0b0000000

As you can see, we now have ONLY the status of pin 5. If this resulting value is nonzero, the pin is
reading a '1". If it is zero, the pin is reading a '0'.



